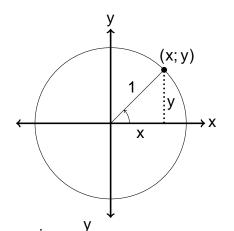
Trigonometric Formula Sheet De nition of the Trig Functions

Right Triangle De nition Assume that: $0 < < \frac{1}{2}$ or 0

> Unit Circle De nition Assume can be any angle.



 $\sin = \frac{opp}{csc}$ $csc = \frac{hyp}{csc}$

Identities and Formulas

Half Angle Formulas r

Tangent and Cotangent Identities

$$\tan = \frac{\sin}{\cos} \qquad \cot = \frac{\cos}{\sin}$$

Reciprocal Identities

$$\sin = \frac{1}{\csc} \qquad \csc = \frac{1}{\sin}$$
$$\cos = \frac{1}{\sec} \qquad \sec = \frac{1}{\cos}$$
$$\tan = \frac{1}{\cot} \qquad \cot = \frac{1}{\tan}$$

Pythagorean Identities $\sin^2 + \cos^2 = 1$ $tan^{2} + 1 = sec^{2}$

 $1 + \cot^2 = \csc^2$

Even and Odd Formulas

sin() = sin	csc() =	CSC
$\cos() = \cos$	sec() = se	ec
tan() = tan	cot() =	cot
Periodic Formulas If n is an integer			
sin(+2 n) = sin	csc(+2 n)) = CSC
$\cos(+2 n) = \cos$	sec(+2 n)	= sec
tan(+ n) = tan	cot(+ n)	= cot
Double Angle Formulas			

1 cos(2) sin = $r \frac{2}{1 + \cos(2)}$ COS = 2 s ___ $1 \cos(2)$ tan = $1 + \cos(2)$ Sum and Di erence Formulas sin() = sin cos cos sin $\cos() = \cos \cos \sin \sin$ $) = \frac{\tan \tan}{1 \tan \tan}$ tan(Product to Sum Formulas $\sin \sin = \frac{1}{2}[\cos() \cos(+)]$ $\cos \cos = \frac{1}{2}[\cos() + \cos() + \sin() + \sin($ $\sin \cos = \frac{1}{2}[\sin(+) + \sin($ $\cos \sin = \frac{1}{2}[\sin(+)) \sin($ Sum to Product Formulas

)]

)]

 $\sin + \sin = 2 \sin \frac{+}{2}$

sin(2) = 2 sin cos

$$\cos(2) = \cos^2 \quad \sin^2$$
$$= 2\cos^2 \quad 1$$
$$= 1 \quad 2\sin^2$$

 $\tan(2) = \frac{2 \tan^2}{1 \tan^2}$

Degrees to Radians Formulas If x is an angle in degrees and is an angle in radians then:

$$\frac{1}{180} = \frac{t}{x}$$
) $t = \frac{x}{180}$ and $x = \frac{180 t}{1}$

Unit Circle

(1; 0)(180;

0;2→(1;0)

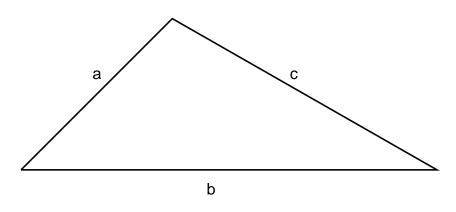
Inverse Trig Functions

De nition

$= \sin^{-1}(x)$ is equivalent to	x = sin	These properties hold for the range	or x in the domain and in
$= \cos^{-1}(x)$ is equivalent to		$sin(sin^{-1}(x)) = x$	sin ¹ (sin()) =
= tan $^{1}(x)$ is equivalent to	an $^{1}(x)$ is equivalent to $x = \tan x$	$\cos(\cos^1(x)) = x$	cos ¹ (cos()) =
Domain and Range		$\tan(\tan^{-1}(x)) = x$	tan ¹ (tan()) =

Inverse Properties

Function	Domain	Range	Other Notations
$= \sin^{-1}(x)$	1 x 1		Other Motations
		2 2	sin ¹ (x) = arcsin(x)
$= \cos^{-1}(x)$	1 x 1	0	4
ta	4 4		$\cos^{1}(x) = \arccos(x)$
= tan ¹ (x)	1 x 1	$\frac{1}{2}^{<} < \frac{1}{2}$	$\tan^{-1}(x) = \arctan(x)$



Law of Sines

sin	sin	sin
=	b	= <u> </u>

Law of Cosines

 $a^2 = b^2 + c^2$ 2bccos

 $b^2 = a^2 + c^2 \quad 2accos$

 $c^2 = a^2 + b^2$ 2abcos

Law of Tangents

$$\frac{a}{a+b} = \frac{\tan\frac{1}{2}(\)}{\tan\frac{1}{2}(\ +\)}$$
$$\frac{b}{b+c} = \frac{\tan\frac{1}{2}(\)}{\tan\frac{1}{2}(\ +\)}$$
$$a = c = \frac{\tan\frac{1}{2}(\)}{\tan\frac{1}{2}(\ +\)}$$

$$\frac{\mathbf{a} \quad \mathbf{c}}{\mathbf{a} + \mathbf{c}} = \frac{\tan \frac{1}{2}(\mathbf{a})}{\tan \frac{1}{2}(\mathbf{a} + \mathbf{a})}$$

Complex Numbers

$$i = {p - 1} \qquad i^2 = 1 \qquad i^3 = i \qquad i^4 = 1$$

$$p - a = i^p \overline{a}; a = 0 \qquad (a + bi)(a = bi) = a^2 + b^2$$

$$(a + bi) + (c + di) = a + c + (b + d)i \qquad ja + bij = {p \over a^2 + b^2} \qquad Complex \ Modulus$$

$$(a + bi) \quad (c + di) = a \quad c + (b \quad d)i \qquad (a + bi) = a \quad bi \ Complex \ Conjugate$$

$$(a + bi)(c + di) = ac \quad bd + (ad + bd)i \qquad (a + bi)(a + bi) = ja + bij^2$$

DeMoivre's Theorem

Let $z = r(\cos + i \sin)$, and let n be a positive integer. Then: $z^n = r^n(\cos n + i \sin n)$:

Example: Let z = 1 i, nd z^6 .

Finding the nth roots of a number using DeMoivre's Theorem

Example: Find all the complex fourth roots of 4. That is, nd all the complex solutions of $x^4 = 4$.

We are asked to nd all complex fourth roots of 4. These are all the solutions (including the complex values) of the equation f = 4.

For any positive integern , a nonzero complex number has exactly n distinct nth roots. More speci cally, if z is written in the trigonometric form $r(\cos + i \sin)$, the nth roots of z are given by the following formula.

()
$$r^{\frac{1}{n}} \cos \frac{1}{n} + \frac{360 \text{ k}}{n} + i \sin \frac{1}{n} + \frac{360 \text{ k}}{n}$$
; for $k = 0; 1; 2; ...; n = 1$:

Remember from the previous example we need to write 4 in trigonometric form by using: $r = {p \over (a)^2 + (b)^2}$ and $= arg(z) = tan^{-1} \frac{b}{a}$.

So we have the complex number + ib = 4 + i0.

Therefore a = 4 and b = 0

Sor = $p (4)^2 + (0)^2 = 4$ and = arg(z) = tan $\frac{1}{4} = 0$

Finally our trigonometric form is $4 = 4(\cos 0 + i \sin 0)$

Using the formula () above with n = 4, we can nd the fourth roots of $4(\cos 0 + i \sin 0)$

For k = 0; $4^{\frac{1}{4}} \cos \frac{0}{4} + \frac{360}{4}$

Formulas for the Conic Sections

Circle

StandardForm :
$$(x h)^2 + (y k)^2 = r^2$$

Where (h; k) = center and r center and r :and

More Conic Sections

Hyperbola

Standard Form for Horizontal Transverse Axis :

$$\frac{(x h)^2}{a^2} \quad \frac{(y k)^2}{b^2} = 1$$

Standard Form for Vertical Transverse Axis :

$$\frac{(y \ k)^2}{a^2} \quad \frac{(x \ h)^2}{b^2} = 1$$

Where (h; k) = center

a=distance between center and either vertex

Foci can be found by using $a^2 = c^2 a^2$

Where c is the distance between

center and either focus. b(> 0)

Parabola

Vertical axis: $y = a(x + h)^2 + k$ Horizontal axis: $x = a(y + h)^2 + h$ Where (h; k)= vertex

a=scaling factor

